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Abstract
In this paper, we study a parametric class of stochastic processes to model
both fast and slow anomalous diffusions. This class, called generalized
grey Brownian motion (ggBm), is made up of self-similar with stationary
increments processes (H-sssi) and depends on two real parameters α ∈ (0, 2)

and β ∈ (0, 1]. It includes fractional Brownian motion when α ∈ (0, 2) and
β = 1, and time-fractional diffusion stochastic processes when α = β ∈ (0, 1).
The latter have a marginal probability density function governed by time-
fractional diffusion equations of order β. The ggBm is defined through the
explicit construction of the underlying probability space. However, in this
paper we show that it is possible to define it in an unspecified probability space.
For this purpose, we write down explicitly all the finite-dimensional probability
density functions. Moreover, we provide different ggBm characterizations.
The role of the M-Wright function, which is related to the fundamental solution
of the time-fractional diffusion equation, emerges as a natural generalization
of the Gaussian distribution. Furthermore, we show that the ggBm can be
represented in terms of the product of a random variable, which is related
to the M-Wright function, and an independent fractional Brownian motion.
This representation highlights the H-sssi nature of the ggBm and provides a
way to study and simulate the trajectories. For this purpose, we developed
a random walk model based on a finite difference approximation of a partial
integro-differential equation of a fractional type.
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1. Introduction

Diffusive processes are generally classified as normal or anomalous if their variance grows
linearly in time or not, respectively. Furthermore, the normal diffusion is associated with the
Gaussian probability density function (PDF) for particle positions.

Several physical phenomena show anomalous diffusion. They range from dispersion in
complex plasmas [1] to self-diffusion of surfactant molecules [2], or from light in a cold
atomic cloud [3] to donor–acceptor electron pair within a protein [4], to mention only some
of the more recent experimental evidences. Such anomalous behaviours cover the full range
of anomalous diffusion, e.g. from slow diffusion [4–6], when the variance grows slower than
linear, to fast diffusion [1–3, 7], when the variance grows faster than linear. In order to model
with a unique mathematical framework both slow and fast anomalous diffusions, a class of
stochastic processes is introduced here and analysed. We would like this work to be a first
step towards a comprehensive description of all dispersive mechanisms. Moreover, the PDF
of particle positions of this class turns out to be related to the M-Wright function, which is a
natural generalization of the Gaussian density.

A Gaussian anomalous diffusion can be obtained from a standard diffusion equation with
time-dependent diffusivity. The latter is mainly based on the empirical flux–gradient relation
and, for this reason, it is considered a simple particular case.

Anomalous diffusion processes can also be obtained as Gaussian processes with time
subordination (see remark 1). As a consequence, the particle density is not Gaussian. This
fact is often seen as the origins and the physical interpretation of anomalous diffusion. In
fact, let f (x, t) be the density function of a diffusive process and G(x, t) a standard Gaussian
density function. Namely, with t � 0,

G(x, t) = 1√
4πt

exp

(
−x2

4t

)
, σ 2

G(t) :=
∫

R

x2G(x, t) dx = 2t. (1)

Let ϕβ(τ, t) = t−βφ(τ t−β), with τ � 0, t > 0 and β > 0, be the marginal probability density
function of a self-similar stochastic process, which is interpreted as a randomized operational
time. Therefore, in agreement with the monotonic growing of time, such a process is required
to be a non-negative non-decreasing random process. Hereinafter, it is called the marginal
probability density function, the one-dimensional PDF of a certain stochastic process (e.g. the
one-point and one-time PDF of particle position)3. Furthermore, we remember that a process
X(t), t � 0, is said to be self-similar with a self-similarity exponent H if, for all a � 0, the
processes X(at), t � 0, and aH X(t), t � 0, have the same finite-dimensional distributions.
We also suppose that φ has moments of any order. Then, if the subordination formula

f (x, t) =
∫ +∞

0
G(x, τ)ϕβ(τ, t) dτ (2)

holds, f (x, t) is the marginal density function of an anomalous diffusion process. In fact,

σ 2
f (t) =

∫ +∞

−∞
x2f (x, t) dx =

∫ +∞

−∞
x2

{∫ +∞

0
G(x, τ)ϕβ(τ, t) dτ

}
dx

=
∫ +∞

0

{∫ +∞

−∞
x2G(x, τ) dx

}
ϕβ(τ, t) dτ

= 2
∫ +∞

0
τϕβ(τ, t) dτ = Dtβ,

3 This notation is a physical analogue of probability theory notation. In fact, this marginal density corresponds to
the result of the integration over an n-dimensional joint density (e.g. the n-points and n-times density associated with
an n-steps particle trajectory).
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where we set

D = 2
∫ +∞

0
ζφ(ζ ) dζ,

which is finite by hypothesis.
We observe that it is desirable having a random time process that for β = 1 gives a

Gaussian process with a linear growing variance in time. Thus, from equation (2), we require
that ϕ1(τ, t) = δ(τ − t).

A ready-made example is given by the M-function (see the appendix), which is related
to the fundamental solution of the so-called time-fractional diffusion equation of order β (see
[8–12]) which, in an integral form, reads

u(x, t) = u0(x) +
1


(β)

∫ t

0
(t − s)β−1∂xxu(x, s) ds, t � 0, (3)

with u0(x) = u(x, 0).
In fact, suppose that the marginal density function of the random time process is

ϕ(τ, t) = t−βMβ(τ t−β) ≡ Mβ(τ, t),

with 0 < β < 1. With this choice, equation (2) becomes

f (x, t) =
∫ +∞

0
G(x, τ)Mβ(τ, t) dτ,

which, by using (A.6) and (A.2), becomes

f (x, t) = 1

2

∫ +∞

0
M1/2(|x|, τ )Mβ(τ, t) dτ = 1

2
Mβ/2(|x|, t). (4)

That is just the fundamental solution of (3). Moreover, when β = 1, equation (3) becomes a
standard diffusion equation and indeed, using (A.5), one finds

f (x, t) =
∫ +∞

0
G(x, τ)M1(τ, t) dτ = G(x, t).

Example 1. Consider a Brownian motion B(t), t � 0, such that E(B(1)2) = 2 (we call it
standard Brownian motion), and consider a random time lβ(t), t � 0, defined by the local
time4 in zero at time t of a d = 2(1 − β)-dimensional Bessel process, with 0 < d < 2 (see
[13–16]). Furthermore, let lβ be independent of B. It is known that lβ is a self-similar process
with the scaling parameter H = β. Therefore, the subordinated process

Dβ(t) = B(lβ(t)), t � 0, (5)

is a model for slow anomalous diffusion, and its marginal probability density function is the
fundamental solutions of the time-fractional diffusion equation of order 0 < β � 1 (also
see [17]). Actually, the local time lβ(t) is defined up to a multiplicative constant (see [18]).
Here, we suppose that lβ(t), t � 0, is defined such that its marginal density function is
Mβ(x, t), x, t � 0.

Example 2. Consider again a standard Brownian motion B(t), t � 0. Another possible choice
of an independent random time process lβ(t), for which the subordinated process B(lβ(t))

has still marginal density governed by the time-fractional diffusion equation of order β, is the

4 Heuristically, the local time l(t, x) of a diffusion process characterizes the ‘time spent by the process at a given
level x up to time t’ (we shortly write l(t) if x = 0). For instance, in the case of Brownian motion, the local time can
be written as l(t, x) = limε→0

1
2ε

∫ t

0 1[x−ε,x+ε](B(s)) ds, where 1[a,b](x) is the indicator function of the interval.
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inverse of the totally skewed strictly β-stable process, as founded in the context of continuous
time random walk (CTRW) by Meerschaert et al [19] (see also [20–24]).

Remark 1. The stochastic interpretation through subordinated processes turns out to be
very natural. A subordinated process is defined as Y (t) = X(l(t)), t � 0, where X(t) is a
Markovian diffusion and l(t) is a (non-negative) random time process independent of X(t) (see
[25, 26]), so that Y (t) has a direct physical interpretation. For instance, X(t) can be interpreted
as the state of a system at time t, while l(t) can be interpreted as the ‘effective activity’ up to
time t. In this way, even if the process X(t) is Markovian, the resulting subordinated process
Y (t) is in general non-Markovian, and the non-local memory effects are attributable to the
random time process l(t) and to its evolution, which is in general non-local in time.

Examples 1 and 2 provide two different stochastic processes with the same marginal
density function (equation (4)). Indeed, it is important to remark that, starting from a
master equation which describes the time evolution of a probability density function f (x, t),
it is always possible to define an equivalence class of stochastic processes with the same
marginal density function f (x, t). The above two examples represent only particular cases of
subordinated-type processes. However, processes which are not of a subordinated type can
also serve as models for anomalous diffusion described by time-fractional diffusion equations
(see [27]). It is clear that additional requirements may be stated in order to fix the probabilistic
model.

Since 0 < β < 1, equation (3) depicts a system with a slow-anomalous diffusion
behaviour. In order to study the full range (slow and fast) of anomalous diffusion, we introduce
a suitable time-stretching g(t) = tα/β, 0 < β � 1 and α > 0. Let f (x, t) be a solution of (3);
then the function fα,β(x, t) = f (x, tα/β) is a solution of the stretched time-fractional diffusion
equation:

u(x, t) = u0(x) +
1


(β)

α

β

∫ t

0
s

α
β
−1(

t
α
β − s

α
β

)β−1 ∂2

∂x2
u(x, s) ds, (6)

with the same initial condition. Then, the fundamental solution of equation (6) is u(x, t) =
1
2Mβ/2(|x|, tα/β) and defines a self-similar PDF of order H = α/2. That is,

u(x, t) = t−α/2

2
Mβ/2(|x|t−α/2), x ∈ R. (7)

The diffusion is slow when α < 1, standard when α = 1 and fast when α > 1. We observe
that when β = 1, u(x, t) is a ‘stretched’ Gaussian density:

u(x, t) = t−α/2

2
M1/2(|x|/tα/2) = 1√

4πtα
exp

(
− x2

4tα

)
, t > 0. (8)

Moreover, in the case α = β, 0 < β < 1, the non-Gaussian probability density u(x, t) =
1
2Mβ/2(|x|, t) is recovered, i.e. the fundamental solutions of equation (3). The diffusion is
always slow and becomes standard when β → 1. Finally, in the general case 0 < β < 1 and
α > 0, we have a non-Gaussian full-ranged anomalous diffusion.

Our main goal is to develop stochastic processes that serve as models for the anomalous
diffusion described by this class of equations (equation (6)). To do this, we require some
constraints. Let X(t), t � 0, be a self-similar stochastic process with the scaling parameter
H = α/2 and marginal probability density function defined by equation (7). We have already
observed that there is a whole equivalence class of such stochastic processes. For instance,
looking at examples 1 and 2, one could immediately take X(t) = B(lβ(tα/β)), t � 0, with a
suitable choice of the independent random time lβ(t). In order to choose a specific model, we
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add the requirement that the process X(t) be also a stationary increments process. Namely, we
require that the process X(t) be H-sssi (self-similar of order H with the stationary increments
process), with H = α/2.

Remark 2. The latter requirement forces the α-parameter to be in the range 0 < α < 2 [28].
Moreover, it automatically excludes the subordinated processes of examples 1 and 2, which
have in general no stationary increments.

Summarizing, we ask that the stochastic process X(t), t � 0, satisfies the following
requirements: let 0 < β � 1 and 0 < α < 2; then

(i) X(t) is self-similar with index H = α/2.
(ii) X(t) has a marginal density function fα,β(x, t) = t−α/2

2 Mβ/2(|x|t−α/2) (see (7)).
(iii) X(t) has stationary increments.

In [27], the authors have shown that a stochastic process which satisfies all the above
properties is the so-called generalized grey Brownian motion (ggBm) Bα,β(t), t � 0, [29, 30].
It represents a generalization of Brownian motion (Bm) and fractional Brownian motion (fBm)
as well. Moreover, it serves as a stochastic model for equation (6). Hence, in this paper, we
will focus on the study of this process.

Remark 3. Because of the stationarity of the increments, the anomalous diffusion appears
deeply related to the long-range dependence characterization of Bα,β(t). We remember that
an H-sssi process has long-range dependence (or long memory) if 1/2 < H < 1. This
means that the discrete time process of its increments exhibits long-range correlation. That
is, the increments’ autocorrelation function γ (k) tends to zero with a power law as k goes to
infinity and in such a manner that it does not become integrable [28, 31, 32]. Therefore, when
0 < α < 1 the diffusion is slow and the process has short memory. While when 1 < α < 2
the diffusion is fast and the process has long memory.

The rest of the paper is organized as follows. In the following section, we briefly introduce the
mathematical definition of the ggBm. In the third section, we characterize the ggBm through
the study of its finite-dimensional probability density functions. The last two sections are
devoted to trajectory simulations and final remarks.

2. The generalized grey Brownian motion

The generalized grey noise space is the probability space (S ′(R),B, µα,β), where S ′(R) is the
space of tempered distribution defined on R,B is the Borel’s σ -algebra generated by the weak
topology on S ′(R) and µα,β is the so-called generalized grey noise measure. The measure
µα,β satisfies∫

S ′(R)

ei〈ω,ξ〉 dµα,β(ω) = Eβ

(−‖ξ‖2
α

)
, ξ ∈ S(R), 0 < β � 1, 0 < α < 2, (9)

where 〈·, ·〉 is the canonical bilinear pairing between S(R) and S ′(R) (see [27]) and Eβ(t) is
the Mittag–Leffler function of order β:

Eβ(x) =
∞∑

n=0

xn


(βn + 1)
, x ∈ R. (10)

Moreover,

‖f ‖2
α = 
(1 + α) sin

π

2
α

∫
R

dx|x|1−α|f̃ (x)|2, f ∈ S(R), (11)

5
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with

f̃ (x) = 1√
2π

∫
R

dyeixyf (y), f ∈ S(R).

The range 0 < β � 1 ensures the complete monotonicity of the function Eβ(−t), t � 0 (see
[33]), as required by equation (9), while the range 0 < α < 2 is chosen in order to have
‖1[a,b)‖2

α < ∞, where 1[a,b) is the indicator function of the interval [a, b). In fact, in this case
one has

‖1[a,b)‖2
α = (b − a)α, 0 < α < 2, 0 � a < b. (12)

It is possible to show (see [27, 29, 30]) that for each t > 0, the real random variable

Xα,β(1[0,t))(·) = 〈·, 1[0,t)〉 (13)

is defined almost everywhere on S ′(R). Moreover, it follows from (9) that it belongs to
L2(S ′(R), µα,β) and

E(Xα,β(1[0,t))
2) = 2


(1 + β)
tα.

The generalized grey Brownian motion is then defined as the process

Bα,β(t) = Xα,β(1[0,t)), t � 0. (14)

The Bα,β(t) marginal density function, indicated with fα,β(x, t), is the fundamental solution
of equation (6). Namely, fα,β(x, t) = t−α/2

2 Mβ/2(|x|t−α/2) (see remark 5). Moreover, the
linearity of definition (14) can be used to show many of the fundamental properties of Bα,β(t).
For instance, Bα,β(t) turns out to be H-sssi with H = α/2. Furthermore, one can calculate
characteristic functions. For example in the one-dimensional case, for any real y and t > 0,

f̃α,β(y, t) = E(eiy(Bα,β (t))) = E(eiXα,β (y1[0,t))).

By using equations (9) and (12), one has

f̃α,β(y, t) = Eβ

(−y2‖1[0,t)‖2
α

) = Eβ(−y2tα).

In the multidimensional case, given a sequence of real numbers {θ1, θ2, . . . , θn}, for any
collection {Bα,β(t1), . . . , Bα,β(tn)} with 0 < t1 < t2 < · · · < tn, using linearity again, one can
show that [27]

E

⎛⎝exp

⎛⎝i
n∑

j=1

θjBα,β(tj )

⎞⎠⎞⎠ = Eβ

⎛⎝−
(1 + β)
1

2

n∑
i,j=1

θiθjγα,β(ti , tj )

⎞⎠ , (15)

where

γα,β(t, s) = 1


(1 + β)
(tα + sα − |t − s|α) , t, s � 0, (16)

is the autocovariance matrix of Bα,β(t).

Remark 4. From equation (15), it follows that, with β fixed, Bα,β(t) is defined only by
its covariance structure. In other words, the ggBm, which is not Gaussian in general, is an
example of a process defined only through its first and second moments, which is a property
of Gaussian processes indeed.

6
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3. Characterization of the ggBm

We now want to characterize the ggBm through its finite-dimensional structure. From
equation (15), we know that all the ggBm finite-dimensional probability density functions
are defined only by their autocovariance matrix. The following proposition holds.

Proposition 1. Let Bα,β be a ggBm; then for any collection {Bα,β(t1), . . . , Bα,β(tn)}, the joint
probability density function is given by

fα,β(x1, . . . , xn; γα,β) = (2π)−
n−1

2√
2
(1 + β)n det γα,β

∫ ∞

0

1

τn/2
M1/2

(
ξ

τ 1/2

)
Mβ(τ) dτ, (17)

with

ξ =
⎛⎝2
(1 + β)−1

n∑
i,j=1

xiγα,β
−1(ti , tj )xj

⎞⎠1/2

,

γα,β(ti , tj ) = 1


(1 + β)

(
tαi + tαj − |ti − tj |α

)
, i, j = 1, . . . , n.

Proof. In order to show equation (17), we calculate its n-dimensional Fourier transform and
find that it is equal to (15). We have∫

R
n

exp

⎛⎝i
n∑

j=1

θjxj

⎞⎠ fα,β(x1, . . . , xn; γα,β) dnx = (2π)−
n−1

2√
2
(1 + β)n det γα,β

×
∫ ∞

0

1

τn/2
Mβ(τ)

∫
R

n

exp

⎛⎝i
n∑

j=1

θjxj

⎞⎠ M1/2

(
ξ

τ 1/2

)
dnx dτ.

We remember that M1/2(r) = 1√
π

e−r2/4; thus we get∫ ∞

0

1

τn/2
Mβ(τ)

∫
R

n

exp

⎛⎝i
n∑

j=1

θjxj

⎞⎠
× (2π)−

n
2√


(1 + β)n det γα,β

exp

⎛⎝−
n∑

i,j=1

xiγ
−1
α,β(ti , tj )xj

2τ
(1 + β)

⎞⎠ dnx dτ. (18)

We make the change of variables x = 
(1 + β)1/2τ 1/2y, with x, y ∈ R
n, and we get∫ ∞

0
Mβ(τ)

∫
R

n

exp

⎛⎝i
(1 + β)1/2τ 1/2
n∑

j=1

θjyj

⎞⎠
× (2π)−

n
2√

det γα,β

exp

⎛⎝−
n∑

i,j=1

yiγ
−1
α,β(ti , tj )yj

2

⎞⎠ dny dτ

=
∫ ∞

0
Mβ(τ) exp

⎛⎝−
(1 + β)τ

n∑
i,j=1

θiγα(ti , tj )θj

2

⎞⎠ dτ

=
∫ ∞

0
e−τsMβ(τ) dτ = Eβ(−s),

where s = 
(1 + β)
∑n

i,j=1 θiθj γα,β(ti , tj )/2 and we have used equation (A.4). �

7
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Applying the Kolmogorov extension theorem, the above proposition allows us to define
the ggBm in an unspecified probability space. In fact, given a probability space (�,F, P ),
the following proposition characterizes the ggBm.

Proposition 2. Let X(t), t � 0, be a stochastic process defined in a certain probability space
(�,F, P ), such that

(i) X(t) has a covariance matrix indicated by γα,β and finite-dimensional distributions
defined by equation (17),

(ii) E(X2(t)) = 2

(1+β)

tα for 0 < β � 1 and 0 < α < 2,
(iii) X(t) has stationary increments,

then X(t), t � 0, is a ggBm.

In fact, condition (ii) together with condition (iii) implies that γα,β must be the ggBm
autocovariance matrix (16).

Remark 5. Using (A.2), for n = 1, equation (17) reduces to

fα,β(x, t) = 1√
4tα

∫ ∞

0
M1/2

(|x|t−α/2, τ
)
Mβ(τ, 1) dτ

= 1

2
t−α/2Mβ/2(|x|t−α/2). (19)

This means that the ggBm marginal density function is indeed the fundamental solution of
equation (6).

Remark 6. Because for β = 1

M1(τ ) = δ(τ − 1),

then, putting γα,1 ≡ γα , we have that equation (17) reduces to the Gaussian distribution of the
fractional Brownian motion. That is,

fα,1(x1, x2, . . . , xn; γα,1) = (2π)−
n−1

2√
2 det γα

M1/2

⎛⎜⎝
⎛⎝2

n∑
i,j=1

xiγ
−1
α (ti , tj )xj

⎞⎠1/2
⎞⎟⎠ .

We have the following corollary.

Corollary 1. Let X(t), t � 0, be a stochastic process defined in a certain probability space
(�,F, P ). Let H = α/2 with 0 < α < 2 and suppose that E(X(1)2) = 2/
(1 + β). The
following statements are equivalent:

(i) X is H-sssi with finite-dimensional distribution defined by (17),
(ii) X is a ggBm with the scaling exponent α/2 and the ‘fractional order’ parameter β,

(iii) X has a zero mean, covariance function γα,β(t, s), t, s � 0, defined by (16) and finite-
dimensional distribution defined by (17).

3.1. Representation of the ggBm

Up to now, we have seen that the ggBm Bα,β(t), t � 0, is an H-sssi process, which
generalizes Gaussian processes (it is indeed Gaussian when β = 1) and is defined only

8
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by its autocovariance structure. These properties make us think that Bα,β(t) may be equivalent
to a process �βXα(t), t � 0, where Xα(t) is a Gaussian process and �β is a suitable chosen
independent random variable. Indeed, the following proposition holds.

Proposition 3. Let Bα,β(t), t � 0, be a ggBm; then

Bα,β(t) =d √
LβXα(t), t � 0, 0 < β � 1, 0 < α < 2, (20)

where =d

denotes the equality of the finite-dimensional distribution, Xα(t) is a standard fBm
and Lβ is an independent non-negative random variable with the probability density function
Mβ(τ), τ � 0.

In fact, after some manipulation, equation (18) can be written as follows:∫
R

n

∫ ∞

0
exp

⎛⎝i
n∑

j=1

θjyxj

⎞⎠ 2yMβ(y2)
(2π)−

n
2√

det γα

exp

⎛⎝−
n∑

i,j=1

xiγ
−1
α (ti , tj )xj /2

⎞⎠ dy dnx

= E

⎛⎝exp

⎛⎝i
n∑

j=1

θj

√
LβXα(tj)

⎞⎠⎞⎠ .

Example 3. A possible choice of Lβ is the random variable lβ(1), where lβ(t), t � 0, is the
random time process of example 1 or example 2.

Remark 7. Proposition 3 highlights the H-sssi nature of the ggBm. Moreover, for β = 1 from
equation (A.5) it follows that L1 = 1 a.s.; thus we recover the fractional Brownian motion of
order H = α/2.

Representation (20) is very interesting. In fact, a number of questions, in particular those
related to the distribution properties of Bα,β(t), can be reduced to questions concerning the
fBm Xα(t), which are easier since Xα(t) is a Gaussian process. For instance, the Hölder
continuity of the Bα,β(t) trajectories follows immediately from those of Xα(t):

E(|Xα(t) − Xα(s)|p) = cp|t − s|pα/2.

Moreover, this factorization is indeed suitable for path simulation (see the following
section).

Remark 8. From equation (20), it is clear that the Brownian motion (B1,1(t), t � 0) is the
only process of the ggBm class with independent increments.

4. Path simulation

In the previous section, we have shown that the ggBm could be represented by the process

Bα,β(t) = √
LβXα(t), t � 0, 0 < β � 1, 0 < α < 2,

where Lβ is a suitable chosen random variable independent of the standard fBm Xα(t).
Clearly, to simulate ggBm trajectories we first need a method to generate the random
variable Lβ .

9
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4.1. The time-fractional drift equation

In order to generate the random variable Lβ with the probability density function Mβ(τ), we
consider the so-called time-fractional forward drift equation, which in an integral form reads

u(x, t) = u0(x) − 1


(β)

∫ t

0
(t − s)β−1 ∂

∂x
u(x, s) ds, x ∈ R, t � 0, 0 < β � 1. (21)

The fundamental solution of equation (21) is [15, 16]

u(x, t) = Mβ(x, t), x, t � 0. (22)

This function can be interpreted as the marginal density function of a non-negative self-similar
stochastic process with the scaling parameter H = β (see examples 1 and 2).

Remark 9. The name ‘drift equation’ refers to the fact that when β = 1 equation (21)
turns out to be the one-dimensional (forward) drift, equation ∂tu(x, t) = −∂xu(x, t), whose
fundamental solution is δ(x − t).

Remark 10. When β = 1, we recover M1(x, t) = δ(x − t) (see (A.5)).

We write equation (21) in terms of the fractional derivative of order β. Let us introduce the
Caputo–Dzherbashyan derivative:

∗D
β
t f (t) = J

1−β
t

∂f

∂t
= 1


(1 − β)

∫ t

0
(t − s)−β ∂f (s)

∂s
ds, (23)

where J α
t is the Riemann–Liouville fractional integral of order 0 � α < 1 such that, for

α = 0, J 0
t is the identity operator. Then, the corresponding Cauchy problem of equation (21)

can be written as{
∗D

β
t u(x, t) = −∂xu(x, t),

u(x, 0) = u0(x) = δ(x),
(24)

with x ∈ R, t � 0 and 0 < β � 1.
Using a random walk model, one can simulate a discrete time random process Lβ(t), t � 0,

governed by the time-fractional forward drift equation (24) (see [34, 35]). In this way, for each
run, the random variable Lβ(1) has the required distribution u(x, 1) = Mβ(x). The random
walk construction follows two steps:

• the Grünwald–Letnikov discretization of the Caputo–Dzherbashyan derivative,
• the interpretation of the corresponding finite difference scheme as a random walk scheme.

4.2. Finite difference schemes

In order to define the finite difference model, we write the Cauchy problem (24) in a finite
domain⎧⎪⎪⎨⎪⎪⎩

∗D
β
t u(x, t) = − ∂

∂x
u(x, t), (x, t) ∈ � = [−a, a] × [0, 1], a > 0,

u(x, 0) = u0(x) = δ(x),

u(−a, t) = �1(t), u(a, t) = �2(t), t > 0.

(25)

Let N,M be positive integers. Then, we introduce a bi-dimensional lattice:

G2M,N
δx,δt = {(jδx, nδt), (j, n) ∈ Z2M × ZN },

10
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contained on �, with δx = 2a/(2M − 1) and δt = 1/(N − 1). The lattice elements are
indicated with

(xj , tn) = (jδx, nδt), j = 0, 1, . . . , 2M − 1, n = 0, 1, . . . N − 1.

Let u : � → R be a function defined on �. We indicate with un
j = u(xj , tn) the restriction of

u to G2M,N
δx,δt evaluated in (xj , tn).

The time-fractional forward drift equation is then replaced by the finite difference equation

∗D
β
t un

j = −un
j − un

j−1

δx
, (26)

where

∗D
β
t un

j =
n+1∑
k=0

(−1)k
(

β

k

)
un+1−k

j − u0
j

δtβ
, u0

j = u0(jδx),

(
β

k

)
= 
(β + 1)


(k + 1)
(β − k + 1)

(27)

is the so-called forward Grünwald–Letnikov scheme for the Caputo–Dzherbashyan derivative
(23). Using the ‘empty sum’ convention

q∑
k=p

· = 0, if q < p,

for any n � 0, we obtain the explicit equation

un+1
j = u0

j

n∑
k=0

(−1)k
(

β

k

)
+

n∑
k=1

(−1)k+1

(
β

k

)
un+1−k

j + µ
(
un

j−1 − un
j

)
, (28)

where µ = δtβ/δx. Equation (28) can be written in the following noteworthy form:

un+1
j = bnu

0
j +

n∑
k=1

cku
n+1−k
j + µ

(
un

j−1 − un
j

)
, (29)

where we have defined

ck = (−1)k+1

(
β

k

)
, k � 1,

bn =
n∑

k=0

(−1)k
(

β

k

)
, n � 0.

(30)

More precisely, the explicit scheme reads⎧⎪⎨⎪⎩
un

0 = �1(tn), un
2M−1 = �2(tn), n > 0,

u1
j = (1 − µ + µL)u0

j , 0 < j < 2M − 1,

un+1
j = (c1 − µ + µL)un

j + c2u
n−1
j + · · · + cnu

1
j + bnu

0
j , n > 0, 0 < j < 2M − 1,

where L is the ‘lowering’ operator Lfj = fj−1.

Remark 11. When β = 1, all the coefficients ck and bn vanish except b0 = c1 = 1, so that
we recover the finite difference approximation of the (forward) drift equation.

In order to write an implicit scheme, we have to use backward approximations for the time-
fractional derivative. Therefore, for any n � 0, we obtain

un+1
j + µ

(
un+1

j − un+1
j−1

) = bnu
0
j +

n∑
k=1

cku
n+1−k
j . (31)

11
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Namely,⎧⎪⎨⎪⎩
un

0 = �1(tn), un
2M−1 = �2(tn), n > 0,

(1 + µ − µL)u1
j = u0

j , 0 < j < 2M − 1,

(1 + µ − µL)un+1
j = c1u

n
j + c2u

n−1
j + · · · + cnu

1
j + bnu

0
j , n > 0, 0 < j < 2M − 1.

The above equation can be rewritten in matrix notation:{
�iju

1
j = u0

i + ψ1
i ,

�iju
n+1
j = c1u

n
i + c2u

n−1
i + · · · + cnu

1
i + bnu

0
i + ψn+1

i , n � 1.
(32)

� is the following 2M × 2M matrix, divided into four M × M blocks:

� =
(

�1 0
�2 A

)

� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0 0 · · · · · · 0
−µ 1 + µ 0 · · · 0 0 0 · · · · · · 0
0 −µ 1 + µ · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 · · · −µ 1 + µ 0 0 · · · 0 0
0 0 0 · · · −µ 1 + µ 0 0 · · · 0
0 0 0 · · · 0 −µ 1 + µ 0 · · · 0
0 0 0 · · · 0 0 −µ 1 + µ · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · 0 0 0 · · · −µ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (33)

Moreover, for any n � 0, ψn is a suitable vector which takes into account for the boundary
terms.

Remark 12. Because � is lower diagonal, �−1 is

�−1 =
(

�−1
1 0

−A−1�2�
−1
1 A−1

)
. (34)

As usual, the explicit scheme is subjected to a stability condition, while the implicit scheme
is always stable. For example, if we take µ � β, namely

δx � δtβ/β, (35)

then the explicit scheme becomes indeed stable and preserves non-negativity as well. This
means that if we suppose u0

j � 0 for any 0 � j � 2M − 1, then un
j � 0 for any n > 0

and 0 < j < 2M − 1. Actually, this is crucial because we interpret
{
un

j

}
as sojourn

probabilities. In order to show this, it is convenient to write equations (29) and (31) in the
Fourier domain. Namely, we apply the discrete Fourier transform with respect to the ‘space’
index j to both sides of (29) and (31). We remember that, given a collection of complex
numbers {xj , j = 0, 1, . . . , 2M − 1}5, its discrete Fourier transform is usually defined as

Fd(xl)k := x̂k =
2M−1∑
j=0

xj e−i2πjk/2M, k = 0, . . . , 2M − 1.

5 Actually, we are considering {xj }, for any j ∈ Z+, as a periodic sequence, such that xj+2M = xj for any
non-negative integer j .

12
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One can show that, for any real number a, one has

F(xj+a)k = ei2πak/2Mx̂k.

Thus, heuristically, the effect of applying the Fourier transform to our finite difference
equations is just to ‘line up’ the points in the Fourier space. In fact, for any n > 0, we
get {

ûn+1
k = ξe(k)̂un

k + (· · ·)k, explicit case,

ξi(k)−1ûn+1
k = βûn

k + (· · ·)k, implicit case,
(36)

where ξe(k) = (β − µ + µe−iπk/M) and ξi(k) = (1 + µ − µe−iπk/M)−1 correspond to the
so-called amplification factors. Then, heuristically, the schemes are stable if |ξ(k)| � 1 for
any k. Namely, one has to require⎧⎨⎩

max
k

((β − µ)2 + µ2 + 2µ(β − µ) cos(πk/M)) � 1, explicit case,

min
k

((1 + µ)2 + µ2 − 2µ(1 + µ) cos(πk/M)) � 1, implicit case.
(37)

Clearly, while the second one is always satisfied, the first condition is indeed true if (35)
holds6.

4.3. Random walk models

We observe that, for 0 < β < 1,
∞∑

k=1

ck = 1, 1 > β = c1 > c2 > · · · → 0. (38)

Moreover, ⎧⎪⎨⎪⎩b0 = 1 =
∞∑

k=1

ck, bm = 1 −
m∑

k=1

ck =
∞∑

k=m+1

ck,

1 = b0 > b1 > b2 > · · · → 0.

(39)

Thus, the coefficients ck and bn are a sequence of positive numbers, which do not exceed unity
and decrease strictly monotonically to zero.

4.3.1. Explicit random walk. In order to build a random walk model, we consider first the
explicit scheme. Omitting the boundary terms, we have{

u1
j = (1 − µ)u0

j + µu0
j−1,

un+1
j = (c1 − µ)un

j + µun
j−1 + c2u

n−1
j + · · · + cnu

1
j + bnu

0
j , n � 1.

We consider a walker which starts in zero at time zero, namely x(t = 0) = 0. We interpret un
j

as the probability of sojourn in xj = jδx at time tn = nδt . Then, we indicate with x(tn) the
position of the particle at time tn.

At time t1 = δt the walker could be at the position x(1) = x1 with probability µ (that
is the probability to come from one space-step behind) or in x(1) = x0 = 0 with probability
1 − µ (that is the probability to remain in the starting position).

6 This follows from the fact that if (β −µ) is non-negative, the maximum is reached when the cosine equals +1, then
one has β2 � 1, which is in fact true by hypothesis.
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From equations (38) and (39), it is clear that the parameters c1, c2, . . . cn, bn can be
interpreted as probabilities. Then, the position at time tn+1 is determined as follows. We define
a partition of events {Ec1 , Ec2 , . . . , Ecn

, Ebn
}, with P(Eck

) = ck, P (Ebn
) = bn, n � 1, such

that

• Ec1 ={the particle starts in the previous position x(tn) and jumps in x(tn) + δx with
probability µ or stays in x(tn) with probability 1 − µ}.

• Eck
={the particle backs to the position x(tn+1−k)}.

• Ebn
={the particle backs to the initial position x(t0)}.

4.3.2. Implicit random walk. Consider the implicit case{
u1 = �−1u0,

un+1 = �−1[c1u
n + c2u

n−1 + · · · + cnu
1 + bnu

0],

where � is given by (34). The probability interpretation of the parameters ck and bn is still
valid. In this case, however, we must use the transpose matrix P of A−1 to define the transition
probabilities. Indeed, the M ×M matrix A−1 propagates in the positive semi-axis. Moreover,
from (33), it can be shown that P defines a transition matrix (all the elements are positive
numbers less than 1 and all the rows sum to 1; see the example below).

Example 4. In the four-dimensional case, the matrix P is

P =

⎛⎜⎜⎜⎜⎝
1/(1 + µ) µ/(1 + µ)2 µ2/(1 + µ)3 µ3/(1 + µ)3

0 1/(1 + µ) µ/(1 + µ)2 µ2/(1 + µ)2

0 0 1/(1 + µ) µ/(1 + µ)

0 0 0 1

⎞⎟⎟⎟⎟⎠ .

In the implicit case, the random walk is defined as follows. Let the particle start at zero; at the
first step, it could jump up to M − 1 steps ahead with probabilities defined by the first P row.
Then we have the following partition of events:

• Ec1 ={the particle starts in the previous position x(tn), for instance xj . Then, it could
jump up to M − j − 1 steps ahead with probabilities defined by the j + 1th P row};

• Eck
= {the particle backs to the position x(tn+1−k), for instance xj . Then it could jump

up to M − j − 1 steps ahead with probabilities defined by the j + 1th P row};
• Ebn

= {the particle backs to the initial position x(t0) and then could jump up to M − 1
steps ahead with probabilities defined by the first P row}.

Remark 13. The implicit method is slower than the explicit one. However, we observe that,
because of the stability constraint (equation (35)), the implicit scheme is advisable for small
β. Indeed, we have δx ∼ δtβ/β, with 0 < β < 1, and we are forced to raise the time steps in
order to improve ‘spatial’ resolution.

4.4. ggBm trajectories

Along this section, we have provided a method to generate the random variable Lβ , and the
simulation results are shown in figures 1–3. In particular,

14



J. Phys. A: Math. Theor. 41 (2008) 285003 A Mura and G Pagnini

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Mβ(x)

histogram

β=0.4
N=10000

lβ
1 X(t)

t

Figure 1. In the top panel, the histogram of Lβ , which is calculated from a sample of N = 10 000
outcomes, is obtained with an implicit random walk scheme and is compared with the exact PDF
Mβ(x), x � 0, with β = 0.4. In the bottom panels, the random variable Lβ (left) and two
trajectory examples (right) are shown.

• Figure 1 shows a random walk simulation with β = 0.4. In this case, we used an implicit
random walk scheme. Moreover, we compared the histogram evaluated over N = 10 000
simulations and the density function M2/5(x), x � 0.

• Figure 2 shows a random walk when β = 0.5. Because M1/2(x) = 1√
π

e−x2/4, x � 0, in

this case L1/2 =d |Z| where Z is a Gaussian random variable.
• Figure 3 shows a random walk with β = 0.8. We used an explicit random walk scheme.

Then, we compared the histogram with the corresponding probability density function
M4/5(x), x � 0.

In all the studied cases, we have found a good agreement between the histograms and the
theoretical density functions.

At this point, in order to obtain examples of the Bα,β(t) = √
LβXα(t) trajectories, we

just have to simulate the fractional Brownian motion Xα(t). For this purpose, we have used
an exact Cholesky method (see [36]).

Path simulations of Bβ,β(t) (shortly Bβ) and B2−β,β(t), with β = 1/2, are shown in
figures 4–9. The first process provides an example of a stochastic model for slow diffusion
(short memory) and the second provides a stochastic model for fast diffusion (long memory).

• Figure 4 shows some typical paths. In the bottom panel, we present the corresponding
increment process. Namely,

Zβ(tk) = Bβ(tk) − Bβ(tk−1), tk = kδt, k = 1, 2, . . . ,M − 1.

• Figure 5 shows the agreement between simulations and the theoretical densities at times
t = 1 and t = 2.
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Figure 2. In the top panel, the histogram for the case β = 0.5 is calculated from a sample of
N = 15 000 outcomes, which are obtained simulating independent Gaussian random variables.
The corresponding Lβ is shown in the bottom.
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Figure 3. In the top panel, the histogram of Lβ , which is calculated from a sample of N = 15 000
outcomes, is obtained with an explicit random walk scheme and is compared with the exact PDF
Mβ(x), x � 0, with β = 0.8. In the bottom panels, the random variable Lβ (left) and many
trajectory examples (right) are shown.
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Figure 4. Bβ(t) trajectories in the case β = 0.5 (top panel) for 0 � t � 2. The time series of the
corresponding stationary noise Zβ(t) is presented in the bottom panel.
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Figure 5. Histograms of N = 15 000 simulations with β = 0.5 and exact marginal density at
t = 1 and t = 2.

• Figure 6 presents the plot of the sample variance in the logarithmic scale. Moreover, we
evaluated a linear fitting, which shows a good agreement with the theoretical result.

• Figure 7 shows some typical paths for the long-memory process B2−β,β(t).
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Figure 6. Sample variance in the logarithmic scale and linear fitting (N = 104).
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Figure 7. B2−β,β (t) trajectories in the case β = 0.5 (top panel) for 0 � t � 2. The corresponding
stationary noise time series is presented in the bottom panel.

• Figure 8 collects the histograms in the case α = 2 − β at times t = 1 and t = 2.
The super-diffusive behaviour (that is the rapid increasing of the variance in time) is
highlighted.

• Figure 9 presents the plot of the sample variance in the logarithmic scale. Even in this
case, we evaluated a linear fitting.
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Figure 8. Histograms of two 15 000 running simulations of B2−β,β (t) with β = 0.5 and exact
distributions at different times t = 2 and t = 1.
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Figure 9. Sample variance in logarithmic scale and linear fitting (N = 104).

5. Concluding remarks

The marginal probability density function (equation (19)) of the generalized grey Brownian
motion Bα,β(t), t � 0, evolves in time according to a ‘stretched’ time-fractional diffusion
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equation of order β (see equation (6)). Therefore, the ggBm serves as a stochastic model for
the anomalous diffusion described by these classes of fractional equations.

The ggBm is defined canonically (see equation (14)) in the so-called grey noise space
(S ′(R),B, µα,β), where the grey noise measure satisfies (9). However, the ggBm is an H-
sssi process of order H = α, and proposition 2 provides a characterization of Bα,β(t) not
withstanding the underline probability space.

There are many other processes which serve as stochastic models for a given master
equation. In fact, given a master equation for a PDF f (x, t), it is always possible to
define an equivalence class of stochastic processes with the same marginal density function
f (x, t). The ggBm defines a subclass {Bα,β(t), t � 0} associated with the non-Markovian
equation (6). In this case, the memory effects are enclosed in the typical dependence structure
of a H-sssi process, while, for instance, in the case of a subordinated process (examples 1
and 2), these are due to the memory properties of the random time process. The latter are
preferable because they provide a ready-made physical interpretation (remark 3). However,
Bα,β(t) is interesting because of the stationarity of its increments.

Proposition 3 provides an enlightened representation of the ggBm. Thus, the ggBm
turns out to be merely a fractional Brownian motion with stochastic variance, that is
Bα,β(t) = �βXα(t), t � 0, where �β is a suitable independent random variable (see
equation (20)). As a final remark, we observe that such a process is not ergodic, as,
heuristically, follows by the multiplication with the random variable �β . This also appears
from the simulated trajectories. Indeed, it is impossible with a single realization of the system
Bα,β(t, ω), ω ∈ �, to distinguish a ggBm from a fBm with variance 2�2

β(ω)tα , where �β(ω)

indicates a single realization of the random variable �β .
As a further development of the present research, it is interesting to wonder if the ggBm is

the only one stationary increment process which serves as a model for time-fractional diffusion
equations like (6).

Acknowledgments

This work has been carried out in the framework of the research project Fractional Calculus
Modelling (URL: www.fracalmo.org). A Mura appreciates partial support by the Italian
Ministry of University (MIUR) through the Research Commission of the University of
Bologna and by the National Institute of Nuclear Physics (INFN) through the Bologna branch
(Theoretical Group). The authors are grateful to Professor F Mainardi for his precious support
in the preparation of this paper.

Appendix A. The M-function

Let us define the function Mβ(z), 0 < β < 1, as follows:

Mβ(r) =
∞∑

k=0

(−r)k

k!
 [−βk + (1 − β)]

= 1

π

∞∑
k=0

(−r)k

k!

 [(β(k + 1))] sin [πβ(k + 1)] , r � 0. (A.1)

The above series defines a transcendental function (entire of order 1/(1 − β/2)) of the Wright
type, introduced by Mainardi in [15, 37] (also see [9, 16]). It is useful to recall some important
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properties of the M-function. The best way to express these properties is in terms of the
function

Mβ(τ, t) = t−βMβ(τ t−β), τ, t � 0,

which defines a probability density function in τ � 0 for any t � 0 and 0 < β < 1.

(i) The following convolution formula holds:

Mν(x, t) =
∫ ∞

0
Mη(x, τ )Mβ(τ, t) dτ, ν = ηβ, x � 0, (A.2)

where ν, η, β ∈ (0, 1).
(ii) The Laplace transform of Mβ(τ, t) with respect to t is

L{Mβ(τ, t); t, s} = sβ−1 e−τsβ

, τ, s � 0. (A.3)

(iii) The Laplace transform of Mβ(τ, t) with respect to τ is

L{Mβ(τ, t); τ, s} = Eβ(−stβ), t, s � 0, (A.4)

where Eβ(x) is the Mittag–Leffler function (10).
(iv) The singular limit β → 1 gives

M1(τ, t) = δ(τ − t), τ, t � 0. (A.5)

(v) Let G(x, t) be the Gaussian density function; then

G(x, t) = 1

2
M1/2(|x|, t) = 1√

4πt
exp

(
−x2

4t

)
. (A.6)
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